
Quadratic Equations | Solved Problems and Practice Questions
Online banking classes – Quadratic equations are one of the most important topics for banking as well as insurance exams as 5 questions are expected from this topic. In these types of questions, you will be given two quadratic equations roots of which you have to find & compare the values of the roots.
Directions (1-10) : In each of the following questions two equations are given followed by 5 options. You have to solve the equations and give an answer:
Quadratic Equations Questions
Q.1 I. 5x² + 29x + 20 = 0
II. 25y² + 25y + 6 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
Q.2 I. 3x² – 16x + 21 = 0
II. 3y² – 28y + 65 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
3 I. x² + x – 12 = 0
II. y² + 2y – 8 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
4 I. 4x² – 13x + 9 = 0
II. 3y² – 14y + 16 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
5 I. 16x² + 20x + 6 = 0
II. 10y² + 38y + 24 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
Learn how to solve Quadratic equations with tricks, click Online Bank Exam Preparation for details.
Q. 6 I. 17x² + 48x = 9
II. 13y² = 32y – 12
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
7 I. 8x² + 26x + 15 = 0
II. 4y² + 24y + 35 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
8 I. 6x² + 19x + 15 = 0
II. 24y² + 11y + 1 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
9 I. 2x² + 11x + 15 = 0
II. 4y² + 22y + 24 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
10 I. 2x² + 9x + 9 = 0
II. 2y² + 17y + 36 = 0
(a) if x < y
(b) if x ≤ y
(c) the relationship between x and y cannot be determined
(d) if x ≥ y
(e) if x > y
Any doubts in Quantitative Aptitude, Reasoning, and English, enroll with us by clicking online bank coaching classes.
Quadratic Equations Solutions
Solution 1. Ans. (a)
Sol.
I. 5x² + 29 + 20 = 0
⇒ 5x² + 25x + 4x + 20 = 0
⇒ (x + 5) (5x + 4) = 0
⇒ x = –5, –4/5
- 25y² + 25y + 6 = 0
⇒ 25y² + 15y + 10y + 6 = 0
⇒ (5y + 3) (5y + 2) = 0
⇒ y = – 3/5, –2/5
y > x
Solution 2. Ans. (a)
Sol.
I. 3x² – 16x + 21 = 0
⇒ 3x² – 9x – 7x + 21 = 0
⇒ (x – 3) (3x – 7) = 0
⇒ x = 3, 7/3
II. 3y² – 28y + 65 = 0
⇒ 3y² – 15y – 13y + 65 = 0
⇒ (y – 5)(3y – 13) = 0
⇒ y = 5, 13/3
y > x
Solution 3. Ans. (c)
Sol.
I. x² + x – 12 = 0
⇒ x² + 4x – 3x – 12 = 0
⇒ (x + 4) (x – 3) = 0
⇒ x = 3, –4
II. y² + 2y – 8 = 0
⇒ y² + 4y – 2y – 8 = 0
⇒ (y + 4) (y – 2) = 0
⇒ y = – 4, 2
No relation
Solution 4. Ans. (c)
Sol.
I. 4x² – 13x + 9 = 0
⇒ 4x² – 4x – 9x + 9 = 0
⇒ (x – 1) (4x – 9) = 0
⇒ x = 1, 9/4
II. 3y² – 14y + 16 = 0
⇒ 3y² – 6y – 8y + 16 = 0
⇒ (y – 2) (3y – 8) = 0
⇒ y = 2, 8/3
No relation
Solutions 5. Ans. (e)
Sol.
I. 16x² + 20x + 6 = 0
⇒ 8x² + 10x + 3 = 0
⇒ 8x² + 4x + 6x + 3 = 0
⇒ (2x + 1) (4x + 3) = 0
⇒ x = –1/2, –3/4
- 10y² + 38y + 24 = 0
⇒ 5y² + 19y + 12 = 0
⇒ 5y² + 15y + 4y + 12 = 0
⇒ (y + 3) (5y + 4) = 0
y = –3, –4/5
x > y
Solution 6. Ans. (a)
Sol.
I. 17x² + 48x – 9 = 0
⇒ 17x² + 51x – 3x – 9 = 0
⇒ (x + 3) (17x – 3) = 0
⇒ x = 3/17, – 3
II. 13y² – 32y + 12 = 0
⇒ 13y² – 26y – 6y + 12 = 0
⇒ (y – 2) (13y – 6) = 0
⇒ y = 2, 6/13
y > x
Solution 7. Ans. (d)
Sol.
I. 8x² + 26x + 15 = 0
⇒ 8x² + 20x + 6x + 15 = 0
⇒ 4x (2x + 5) + 3(2x + 5) = 0
⇒ (2x + 5) (4x + 3) = 0
⇒ x = – 5/2, –3/4
II. 4y² + 24y + 35 = 0
⇒ 4y² + 10y + 14y + 35 = 0
⇒ 2y (2y + 5) + 7 (2y + 5) = 0
⇒ (2y + 5) (2y + 7) = 0
⇒ y = –5/2, –7/2
x ≥ y
Solution 8. Ans. (a)
Sol.
I. 6x² + 19x + 15 = 0
⇒ 6x² + 9x + 10x + 15 = 0
⇒ (2x + 3) (3x + 5) = 0
⇒ x = –3/2, –5/3
II. 24y² + 11y + 1 = 0
⇒ 24y² + 8y + 3y + 1= 0
⇒ (3y + 1) (8y + 1) = 0
⇒ y = –1/3, –1/8
y > x
Solution 9. Ans. (c)
Sol.
I. 2x² + 11x + 15 = 0
⇒ 2x² + 6x + 5x + 15 = 0
⇒ (x + 3) (2x + 5) = 0
⇒ x = – 3, –5/2
II. 4y² + 22y + 24 = 0
⇒ 2y² + 11y + 12 = 0
⇒ 2y² + 8y + 3y + 12 = 0
⇒ (y + 4) (2y + 3) = 0
⇒ y = –4, –3/2
No relation
Solution 10. Ans. (e)
Sol.
I. 2x² + 9x + 9 = 0
⇒ 2x² + 6x + 3x + 9 = 0
⇒ (x + 3) (2x + 3) = 0
⇒ x = –3, –3/2
II. 2y² + 17y + 36 = 0
⇒ 2y² + 8y + 9y + 36 = 0
⇒ (y + 4) (2y + 9) = 0
y = – 4, –9/2
x > y
Related articles
More Quant topic
Takshila Learning offers online bank coaching videos , online classes for bank po preparation , online coaching classes for IBPS / SBI. We provide basic & advanced packages for IBPS PO, IBPS Clerk, SBI PO, SBI Clerk, RRB and other exams. We provide exceptional facilities to our aspirants that distinguish us from the rest of the institutes. For more details visit www.takshilalearninng.com or call us @ 8800999280.
Click below and Subscribing to our social channels
: Call us: 8800999280/8800999284 or fill the form for any other details:
Tag – Quadratic Equations Questions; Quadratic Equations Questions with the answer; quadratic equations for bank exams; high level quadratic equation for sbi po; maths for competitive exams; quadratic equation examples; what is quadratic equation
0 responses on "Quadratic Equations | Solved Problems and Practice Questions"